- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Gustafson, Eric J (1)
-
Lucash, Melissa S (1)
-
Mast, Colin (1)
-
Schepaschenko, Dmitry (1)
-
Shvidenko, Anatoly Z (1)
-
Sturtevant, Brian R (1)
-
Williams, Neil (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
functions and services for human societies. Temperatures are increasing most rapidly in high northern latitudes, altering tree growth and competition dynamics, and modifying disturbance regimes. The effect of these cumulative changes on the ecosystem functions provided by boreal forests is difficult to predict. We used the process-based LANDIS-II forest landscape model to evaluate how climate change and timber harvesting will interact to alter the production of ecosystem functions and services in boreal forests on three study areas across a large latitudinal gradient (11°) in central Siberia. We found that the relative importance of wood harvesting as a disturbance type varied depending on latitude and its impact was always far less than that of fire. Moderate climate change increased the availability of wood for harvest in the northern landscape, but wood availability declined in the southern landscapes under any amount of climate change likely because of an increase in the frequency of fire that kept forests too young for harvest. Modest climate change (RCP6.0) increased productivity and the storage of carbon in all landscapes but severe climate change (RCP8.5) reduced both in the southernmost landscape. Harvesting as a specific driver of change in these boreal forests is likely to be relatively minor except as a forest fragmentation process. Our results provide compelling evidence that status quo forest management in these landscapes is likely not sustainable, suggesting that climate-smart forestry will be needed.more » « lessFree, publicly-accessible full text available April 22, 2026
An official website of the United States government
